On the Eisenstein ideal for imaginary quadratic fields
نویسنده
چکیده
For certain algebraic Hecke characters χ of an imaginary quadratic field F we define an Eisenstein ideal in a p-adic Hecke algebra acting on cuspidal automorphic forms of GL2/F . By finding congruences between Eisenstein cohomology classes (in the sense of G. Harder) and cuspidal classes we prove a lower bound for the index of the Eisenstein ideal in the Hecke algebra in terms of the special L-value L(0, χ). We further prove that its index is bounded from above by the p-valuation of the order of the Selmer group of the p-adic Galois character associated to χ−1. This uses the work of R. Taylor et al. on attaching Galois representations to cuspforms of GL2/F . Together these results imply a lower bound for the size of the Selmer group in terms of L(0, χ), coinciding with the value given by the Bloch-Kato conjecture.
منابع مشابه
An Eisenstein ideal for imaginary quadratic fields and the Bloch-Kato conjecture for Hecke characters
For certain algebraic Hecke characters χ of an imaginary quadratic field F we define an Eisenstein ideal in a p-adic Hecke algebra acting on cuspidal automorphic forms of GL2/F . By finding congruences between Eisenstein cohomology classes (in the sense of G. Harder) and cuspidal classes we prove a lower bound for the index of the Eisenstein ideal in the Hecke algebra in terms of the special L-...
متن کاملDenominators of Eisenstein Cohomology Classes for GL2 over Imaginary Quadratic Fields
We study the arithmetic of Eisenstein cohomology classes (in the sense of G. Harder) for symmetric spaces associated to GL2 over imaginary quadratic fields. We prove in many cases a lower bound on their denominator in terms of a special L-value of a Hecke character providing evidence for a conjecture of Harder that the denominator is given by this L-value. We also prove under some additional as...
متن کاملALGEBRAIC THETA FUNCTIONS AND p-ADIC INTERPOLATION OF EISENSTEIN-KRONECKER NUMBERS
We study the properties of Eisenstein-Kronecker numbers, which are related to special values of Hecke L-function of imaginary quadratic fields. We prove that the generating function of these numbers is a reduced (normalized or canonical in some literature) theta function associated to the Poincaré bundle of an elliptic curve. We introduce general methods to study the algebraic and p-adic proper...
متن کاملStability of Ideal Lattices from Quadratic Number Fields
We study semi-stable ideal lattices coming from quadratic number fields. We prove that all ideal lattices of trace type from rings of integers of imaginary quadratic number fields are semi-stable. For real quadratic fields, we demonstrate infinite families of semi-stable and unstable ideal lattices, establishing explicit conditions on the canonical basis of an ideal that ensure stability; in pa...
متن کاملALGEBRAIC THETA FUNCTIONS AND THE p-ADIC INTERPOLATION OF EISENSTEIN-KRONECKER NUMBERS
We study the properties of Eisenstein-Kronecker numbers, which are related to special values of Hecke L-function of imaginary quadratic fields. We prove that the generating function of these numbers is a reduced (normalized or canonical in some literature) theta function associated to the Poincaré bundle of an elliptic curve. We introduce general methods to study the algebraic and p-adic proper...
متن کامل